
DESIGN
BUILD
COMPETE
REPEAT

TAKING FRC ROBOTS TO THE NEXT
LEVEL WITH ROS

Chris Bonomi

ABOUT ME
● Student on Team 195 from 2015-2018

○ Programming Lead 2016-2018
● Studied Computer Engineering at Florida Institute

of Technology
● Software Engineer @ Lockheed Martin
● Current Lead Programming Mentor for Team 195

WHAT IS ROS?

WHAT IS ROS?
● Robot Operating System
● Open source framework for building

robotics software
● Modular message based system
● Enables developers to create robust

and complex robotic systems, while
still maintaining flexibility and
scalability

WHY ROS?

WHY ROS?
● Industry standard
● Modular code base
● Full C++ & Python support
● Easy data logging and recording
● Open source
● Commercial Friendly
● Large ecosystem of existing packages
● Very active community

HARDWARE
OVERVIEW

/ Orange Pi 5

INTRODUCTION TO
ROS2

WHAT WE USE
● 2023

○ ROS 1: Noetic Ninjemys
○ Jetson Xavier NX - Not connected directly to CAN

● New for 2024
○ ROS 2: Iron Irwini
○ Jetson Xavier NX - Connected directly to CAN

● Exploring for 2025
○ Orange Pi 5 / 5 Plus

■ Cheaper than the Jetson (~$150 vs. ~$400)
■ More powerful CPU / Non-CUDA Accelerated GPU

NODE-BASED ARCHITECTURE
● Distributed network of individual processes, performing specific

tasks. E.x. Drivebase node, Shooter node, HMI node
● Each node can send a receive data from other nodes via topics,

and can be configured with parameters

TOPICS
● One of the main ways in which data is exchanged between

nodes
● A node may publish data to any number of topics while

simultaneously have subscriptions to any number of topics

MESSAGES
● Data structures that are sent back and forth between nodes

across topics, containing information such as sensor data,
controller inputs, odometry data

● ROS provides many standard message types, but also supports
the creation of completely custom types

PARAMETERS
● Parameters are configuration values for nodes
● Configured as a YAML file, each node in ROS2 has its own set of

parameters
● Supported types are: integers, floats, booleans, strings, and lists
● Parameters may be dynamically modified at runtime, allowing

for easy tuning of PID gains, changing of control button layouts,
etc.

KEY BENEFITS

KEY BENEFITS
● Code Reusability

○ Since each node is fully modular, they can easily be shared between projects
or carried over from year to year with very little to no code modification, only
parameters

● Fault Tolerance
○ A code failure in a single node will cause only that node to crash, and nodes

can be configured to respawn after a crash, so even in the event of a fault
the rest of your code can continue to function

● Easy Live Debugging/Recording
○ Programs like PlotJuggler and Foxglove can monitor all topics in real time

and plot numeric values
○ Foxglove is even capable of rendering 3D scenes and more (Demo shortly)
○ Topics can also be recorded to a standard MCAP format, for future review to

identify errors i.e. failure on the field

DEVELOPMENT
ENVIRONMENT

DEVELOPMENT ENVIRONMENT
● Ubuntu Virtual Machine

○ 20.04/22.04 to resemble the operating system running on our Jetson

● Docker Container
○ All code is developed and built inside of a docker container, allowing greater

control and consistency over our environment from computer to computer
○ The same container is present on the Jetson, and is where ROS runs

● Code Editing
○ All editing is done though Visual Studio Code with the following extensions

■ Dev Containers (Microsoft)
■ C++ Intellisense (Microsoft)
■ Python (Microsoft)

PROJECT LAYOUT
● Flat project structure
● Every robot project starts with 2 sub-projects

○ ros2_dev
■ Contains scripts needed for starting the container and

developing/building the robot project
○ A robot sub-project E.x. university_day_robot, 2023_robot

■ Must end in “_robot”
■ Contains launch files, parameter files, and a special file called

ros_projects.txt
● This file defines all other nodes that this robot project requires to

run i.e. rio_control_node

● All other node sub-projects are cloned
automatically by the mkrobot script

MKROBOT SCRIPT
● One script to handle nearly all project actions

○ Clone all nodes listed in the robots ros_projects.txt file (See example)
○ Update all nodes from git
○ Create new nodes
○ Build/clean project
○ Launch project locally
○ Deploy project to robot

COMMON PROJECTS
● ckriopassthru

○ This is the project that is deployed to the RoboRIO
○ Sends and receives control signals to the Jetson
○ Serializes data with Protobuf and transmits the data with ZMQ

● rio_control_node
○ This node is responsible for communicating with the rio passthru, acting as the

bridge for all other ROS nodes to send/receive commands from the RIO

● phoenix_pro_control_node
○ If using a Canivore with the Jetson, this node sends commands directly to the CTRE

CAN devices, without needing to go through rio_control_node and ckriopassthru

● ck_ros2_base_msgs_node
○ This common node contains standard custom message types that are used

throughout the entire robot project

● Utility Nodes
○ Common utilities implemented in both C++ and Python to be reused between nodes

OUR LITTLE GUY

FLATTY 2!!
● Basic Differential Drive

○ 2 Falcon 500 motors

● Jetson Xavier NX Coprocessor
○ Directly connected to the robot

CAN network with a USB Canivore

● VERY Messy Wires

*artists rendition

LIVE CODING!

DELIVERABLES
● drivetrain_node (C++)

○ Subscribe to HMI signals topic to get driver control data
○ Calculate arcade drive outputs for left and right motors and apply them
○ Publish a diagnostic message to be plotted in Foxglove

● hmi_agent_node (Python)
○ Subscribe to Joystick status topic to get current joystick inputs
○ Read the values of the desired axes and buttons
○ Publish the desired control inputs on the HMI topic

QUESTIONS?
Email:
programming@team195.com
GitLab:

